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Prediction of the stress-strain curve of a 
short-fibre reinforced thermoplastic 
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Delaware 19711, USA 

Analytical work has been performed to predict the stress-strain curve of a carbon fibre 
reinforced polyamide 66. A typical stress-strain curve of this composite consists of three 
stages. Beyond the first linear stage the change of slope of the curve is attributed to the 
initiation and extension of cracks at fibre ends. Several theoretical models have been 
developed to take into account the development of cracks at various loading levels. 
Fibre volume-fraction, aspect ratio and orientation as well as fibre and matrix elastic 
properties and interface energies are the major parameters considered. The theoretical 
predictions are in close agreement with the experimental data. 

1. Introduction 
Short-fibre reinforced resins and metals have 
emerged as composites of major technological 
significance in recent years. The thermomechanical 
behaviour of short-fibre composites has been 
given considerable attention by researchers regard- 
ing their stiffness [1], thermal conductivity [2], 
thermal expansion [3] and strength [4]. This paper 
is devoted to the study of the load-deformation 
behaviour of short-fibre composites with particular 
attention on reinforced thermoplastics. 

A typical stress-strain curve of short-fibre 
reinforced thermoplastics has basically three stages 
[5], the first stage being linear, and the second 
and third stages being non-linear as shown in Fig. 1 
for the case of graphite short-fibre (10% volume- 
fraction) reinforced nylon. It has been observed 
that in the first stage the bonding of the matr ix-  
fibre interface is essentially perfect and both 
phases deform elastically, and in the second stage 
microcracks are initiated from fibre ends and they 
extend into the matrix. In the third stage the 
microcracks are abundant and some of them grow 
to a large size, leading to the failure of the com- 
posite. The non-linearity in the second and third 
stages is due to the initiation and development 
of microcracks. 

Taya and Chou [6] have simulated the stress- 
strain curve of unidirectional short-fibre reinforced 

thermoplastics, and have solved the following 
problems: 

(1) Prediction of the longitudinal Young's 
modulus of the first stage, E(~ ). 

(2) Prediction of the transition stresses ol 
between the first and second stages, and ~2 between 
the second and third stages. 

(3) Prediction of the longitudinal Young's 
modulus of the second stage weakened by the 
microcracks, E~ ) . 

In this paper the focus is on misoriented short- 
fibre composites which is the case given in [5]. To 
this end, two analytical methods developed by the 
authors will be employed. The first method [7] is 
for computing the stiffness of randomly oriented 
short-fibre composites, and the second [8] is for 
predicting the critical applied stress at which a 
penny-shaped crack arrested by the adjacent fibres 
penetrates the arresting fibres. In this paper we 
will also employ a refined model for evaluating 
cumulative crack density function. 

The analytical techniques used in this study, as 
well as our previous works, are mainly based on 
Eshelby's equivalent inclusion method [9] and the 
solution procedure based upon this method has 
been discussed elsewhere, for example, [10, 11]. 
Thus we will discuss only briefly the solution 
procedure to compute E~ ) in Section 2, ol in 
Section 3, or2 in Section 4, and E~) in Section 5. 
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Analytical results are obtained for 20% volume 
fraction of graphite short-fibre composite and they 
are compared with experimental data in Section 6. 
Finally, the conclusions are given in Section 7. 

2 .  P r e d i c t i o n  o f  E L  1) 

In order to compute the longitudinal Young's 
modulus of misoriented short-fibre composites in 
the first stage, E(~ ) , the theoretical model shown 
in Fig. 2 is considered. I t  is assumed in this model 
that all short fibres are elongated ellipsoids of the 
same size and oriented randomly within certain 
limits and the composite possesses transverse iso- 
tropy. The probability density function, g(0), is 
taken as 

L, o<o<  
g(O) = (1) 

7r 
0, ~ < 0 ~ < - -  

2 

where 0 is the orientation angle of a short fibre 
with respect to the x3-axis (loading direction) as 
shown in Fig. 2, and a is the limit of 0. 

The analytical method of computing E(~ ) has 
recently been developed by Takao et al. [7] and 
is reviewed briefly below. Refering to a typical 

Figure 1 The typical stress-strain curve of a short-fibre 
reinforced thermoplastic [5 ]. 

short fibre in Fig. 2, the global and local coordin- 
ates are denoted by x i and x '  i, respectively. The 
applied stress along the xa -axis, Oo can be decom- 

rO posed into three components, craa =o0cos20,  
0 I ,o • Oo sin 20 and a23 a22 = aosin0cos0 where t h e  

prime denotes the local co-ordinates attached to 
the fibre. For each local applied stress a ~ Eshelby's 
equivalent inclusion method yields in the fibre 
domain: 

c O  [ ~ 0  t - r  r , i  r f  [ ~ 0  ~ 
i j k l k ~ k l  Jr 6 k l  Jr 6 k l  - -  ek l  ) = t . , i j k l k~k l  

~P t 
+ e m  + era), (2) 

where 

and 

t ~ 0 (3) 
t , t  

e m =  Smrn, emn (4) 

<oi~>M = C ~  ' ekl. (5) 

In the above equations, <al)) M is the average of 
the stress disturbance in the matnx", oij' and e O' are 
the disturbances of the stress and strain, respec- 

, t  
tively, caused by this single fibre, em is called 

eigenstrain which assumes some value in the fibre, 
but vanishes in the matrix, and Smmn is the 

0 f C~jm Eshelby's tensor. Cijm and denote elastic 
stiffness constants of the matrix and fibre, respec- 
tively. Since the integration of stress disturbance 
over the entire composition domain vanishes, 
foi jdV = 0 [10-13] ,  gives 

o Corn em+ <oi.i)V = 0. (6) 

Using Equation 6 and co-ordinate transformation, 
the eigenstrain in the global co-ordinate, ei~, can 
be solved. EL can then be computed by substitut- 
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Figure 2 A theoretical model for 
a randomly oriented short-fibre 
reinforced composite. 

ing eis into the equation of equivalence of strain 
energy: 

0 2 
- + - ! - 1  ( dr, (7) 

2EL 2Era 2 Vo "vv 

Where E m is Young's modulus of the matrix, Vo 
and Vf are, respectively, the volumes of the com- 
posite and all fibres, e~3 is a component of the 
eigenstrain and it is a function of the elastic con- 
stants of the matrix and fibre, the aspect ratio of 
the fibre and 0. 

We also introduce an orientation factor in the 
first stage, g l ,  for the convenience of later calcu- 
lations, gl is defined as 

gl -- E(~), (8) 

where /~(~) is the longitudinal Young's modulus 
of the composite where all short fibres are aligned 
in the loading direction, and E~ ) is that of the 
misoriented short-fibre composite. 

3. Prediction of o l  
In order to predict the transition stress between 
the first and second stages, o1, it is assumed that 

under the applied stress o~ a penny-shaped crack 
is initiated from the end of a short fibre which is 
aligned with the loading direction (Fig. 3) while a 
majority of the fibres are randomly oriented. In 
order to account for the random orientation of 
short fibres, the following steps are adopted: 

(a) Compute al for the case of completely 
aligned short-fibre system. 

(b) Multiply ol obtained above by the orienta- 
tion factor h t which will be defined in Equation 
12. 

The first step has been performed by Taya and 
Mura [10], who use two calculation models: the 
composite before a fibre-end crack is initiated 
(Fig. 3a) and that after it is initiated (Fig. 3b). 
The analytical methods of [6] are briefly reviewed 
below. 

Consider the total free energy of the composite 
before (Ul) and after (/-72) the fibre-end crack is 
initiated. In order for a small penny-shaped crack 
to initiate at the fibre-end, the following inequality 
must be satisfied, 

U, >~/_72. (9) 

In [lO], the above inequality can be expressed as 
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Figure 3 The model for calculating o~. 

8 o~(1 - G ) ( 1  + h ) c  ~ 
~> 7rC27m, (10) 

3 Em 

where v m and 3'rn are Poisson's ratio and the sur- 
face energy of the matrix, respectively. C is the 
radius of the penny-shaped crack and ~ is a fibre 
interaction parameter which is a function of the 
elastic constants of the matrix and fibre, the fibre 
aspect ratio and the volume-fraction of fibre f t .  
Also in Equation 10 we have assumed that the 
order of magnitude of the surface energy of the 
matrix-fibre interface 3'i is much smaller than 
that of 7m .* 

To account for the random orientation of the 
short fibres, we assume that the effective applied 
stress for a short fibre at an angle 0 with respect 
to the xa-axis (Fig. 2) is 9oC0S20 by neglecting 
the shear and transverse stress components. By 
replacing o2 in Equation 10 with 02oCOS40 and 
considering the contribution of all misaligned 
fibres, we obtain 

( 37r'YmEm ) 1/2 
ol = h, 8 ( 1 - - v ~ ) ( 1 + ~ 1 ) C  ' (11) 

where hi in Equation 11 is the orientation factor 
and is defined by 

hi = f o  cos40_1 dO. (12) O~ 

4.  P r e d i c t i o n  o f  cr 2 
It is assumed that the end of the. second stage 
corresponds to the moment when the fibre end 
crack in the position as indicated by the solid 
curve in Fig. 4 is just about to extend further in 
the matrix. The critical stress o2 for the penny- 
shaped crack of radius Cl + C2 (Fig. 4) to propa- 
gate as a Griffith-type crack is 

( 7 r , , / r n E m ) 1 / 2  
o2 = 2(1 --v2m)(C1 + C2) (13) 

We comment here on the extension of the crack 
arrested by the adjacent fibres from the position 
indicated by the dotted line to the position shown 
by the solid line in Fig. 4. Growth of cracks of 
this type has been examined by Ishikawa et aL 
[8]. They investigated the critical applied stresses 
necessary for the crack to propagate into the fibre 
(penetration type) or into the fibre-matrix inter- 
face (debonding type). In Section 6.3 it is shown 
that, for the short fibre composite system studied 
here, fibre penetration or interfacial debonding 
occurs at a stress level below that of o2. It is thus 
feasible for the crack to extend into the matrix at 

�89 

/ fibre 

penny-shoped ~//[ 
//i 

l //i 
VA 

o- a 

Figure 4 The model for calculating 02 . The short fibre at 
which the crack was initiated is not shown. 

*If we include the effect of 3'I in computing a 1, then 3'm in Equation 11 should be replaced by "I'm + 3'I. 
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the beginning of the third stage of the stress- 
strain curve. 

In Fig. 4, we consider the special configuration 
where the fibres are in the position of being aligned 
with the applied load. As far as the extension of 
the penny-shaped crack, and hence the third stage 
deformation, are concerned this may be the most 
probable configuration. For cracks meeting fibres 
inclined to the crack plane, extensive interface 
debonding is most likely to occur. Thus the crack 
will be rendered ineffective, and the third stage 
deformation may be suppressed. 

5. Prediction of, E(L 2) 
In the second stage, the densityfe of penny-shaped 
cracks in the composite is defined as 

N C a 
/e -'- V (14) 

where N is the total number of cracks, C is the 
radius of penny-shaped cracks, and V is the total 
volume of the body. It is further assumed that at 
the end of the second stage all the fibres have 
initiated penny-shaped crack of radius C = 1.5d 
[5]. Then the crack density at the end of the 
second stage, f e  = 0.0516 for l/d = 50. In order 
to compute E(~ ) at all stress levels between a~ and 
g2, we assume that the crack density of the com- 
posite is governed by the stress levels as 

(~176 fc = ~l tan - -  , (15) 
l o 2  - o q  

where ~1 = 0.1284 for f *  = 0.0516. The choice 
of Equation 15 is made based on the acoustic 
emission result [5]. For o between ol and o2, 
some fibres remain intact and the others have 
developed fibre-end cracks. Thus, the volume- 
fraction of fibres with no cracks attached fF,  is 
given by 

fF = a2 [t~a--tan ( ~176 ][ o2 _ ~ J (16) 

where a2 = 0.1284, a3 = tan 1 for f*  = 0.0516. 
Based upon Equations 15 and 16, we proceed 

to compute Et~ ) at various stress levels. However, 
an exact calculation of E ~  ) for a randomly ori- 
ented short fibre composite with fibre-end cracks 
is extremely difficult. Hence we compute E L for 
the completely aligned case and then multiply it 
by the orientation factor g~ defined in Equation 
8. A computation of E L of a completely aligned 

short-fibre composite where some of the fibres 
have initiated penny-shaped cracks at their ends 
has recently been made by Takao et al. [14]. 
The effect of fibre-end cracks on E L is incorpor- 
ated into a calculation model where the fibre 
with its end cracks is decomposed into two kinds 
of inhomogeneities: a penny-shaped crack and a 
fibre of length l -- 2c with l and c being the length 
of a perfect fibre and the radius of the fibre-end 
crack, respectively. Thus, the whole composite 
contains three kinds of  inhomogeneities: penny- 
shaped cracks, fibres of length l, and fibres of 
length l - - 2c .  By use of the above model and 
along with Eshelby's equivalent inclusion method 
and back stress analysis, Takao et al. [14] have 
computed EL of completely aligned short fibre 
composite. 

It should be noted that multiplying EL for the 
aligned short-fibre composite with cracks by the 
orientation factor gl is a first-order approxima- 
tion of E~ ). It is also understood that the value of 
E(~ ) obtained by this procedure gives the secant 
modulus of  the stress-strain curve since our 
model is based on a linear elastic analysis (with 
constant applied stress). 

6. Results and discussion 
Twenty per cent carbon short-fibre reinforced 
polyamide 66 [5] is used for the analytical study. 
Its material properties are given in Table I. 

6,1.  C o m p u t a t i o n  of  E[I) 
Curtis et al [5] made no measurement on the fibre 
orientation distribution and they deduced the 
fibre orientation factor from the rule-of-mixtures 
type formula. It should be noted that Fukuda and 
Chou [16] also adopted the step function type 
representation of fibre orientation distribution in 
the prediction of short-fibre composite strength. 
However, the transverse (o0sin20) and shear 

TABLE I Material properties of 20% carbon short-fibre 
reinforced polyamide 66 

Polyamide 66 " E m = 2 • 109 Pa 
v m = 0.42 
7m = 300 J [151 

Carbon fibre E f  = 2 • 10 n Pa 
uf = 0.17 
l = 0.35 mm 

d = 0.007 mm 

Interface energy 3,i = 3.73 J m-: 

Volume-fraction of fibre fF = 0.2 
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(aosin0cos0) components were not taken into 
account. 

Based on the work of Takao et al. [7], we have 
computed the longitudinal Young's modulus for 
the cases of aligned fibres (ffL) and randomly 
oriented fibres with various values of a (EL). The 
ratio EL/EL (defined by Equation 8) is plotted 
as a function of a in Fig. 5. For the data of Equa- 
tion 17, we obtain E L = 32.82 GPa and the experi- 
mentally measured value of EL is 24 GPa [5]. 
Thus, EL/EL = 0.73, which yields the value of 

= 31 ~ from Fig. 5. Therefore, we predict that 
the orientation angle range a of the carbon short- 
fibre composite used by Curtis et al. [5] is about 
31 ~ 

6.2. Computation of o t 
From Equations 11 and Table I, as well as a = 31 o 
we obtain 

at = 133 MPa, (17) 

whereas the experimental value of el at e = 0.0052 
is 124.8 MPa. Thus the value predicted theoretic- 
ally is in good agreement with the experimental 
result. 

6.3.  C o m p u t a t i o n  of  o= 
Before computing 02, we investigate the values of 
the critical stresses for the penny-shaped crack 
arrested by the adjacent fibres to penetrate through 
the fibre (%,) and for that to extend along the 
matrix-fibre interface (oi). According to [8], 
the above stresses for the present problem are: 

ap = 160.47 MPa 

a1 = 83.1 MPa (18) 

In the derivation of Equation 18 we have used the 
average spacing between fibres of 0.02423 mm, 

1.0 Ef/E m :I00 
Zld = 50 

g+=~ ~ v,=0.42 
vf =0.17 

- -  = . 

0 . 5  

I I I 

30 60 90 ~ 
ot 

Figure 5 Orientation factor gl (=  EL//~L) plotted against 
the orientation range a. 
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which is based on the data of Table I and the 
model used in [5]. Now the critical stress for the 
penny-shaped crack (the solid curve in Fig. 4) to 
further extend into the matrix, a2, can be com- 
puted from Equation 13 as 

a2 = 191.4MPa. (19) 

It follows from Equations 18 and 19 that the 
value of a2 exceeds those of ap and ai. Conse- 
quently, at applied stresses lower than the a2 the 
penny-shaped crack in Fig. 4 can advance from the 
position indicated by the dotted curve to that 
shown by the solid curve either by a debonding 
or penetration mechanism. There is no experi- 
mental data available for a2. However, we can use 
the fracture stress as a2 since the third stage of the 
composite deformation is very short and its value 
is estimated to be 210 MPa. Hence the theoretical 
value given by Equation 19 agrees well with the 
experimental value by neglecting the third stage 
of the stress-strain curve. 

6.4. Computation of El2 ) 
By using Equations 15 and 16 and Table I, taking 
a to be 31 ~ and the method by Takao et al. [14], 
we have computed ~-(2) '~L at various applied stress 
levels o, and the results are plotted in Fig. 6. It 
can be seen that E~ ) reduces at a linear rate, which 
is in close agreement with the experiment as repre- 
sented by Fig. lb. The rate of slope change pre- 
dicted theoretically is 1200 GPa which agrees 
reasonably well with the experimental result of 
860 GPa. 

6.5. Computation of the fracture strain ef 
The fracture strain ef can also be computed by use 
of the value of 02 computed in Section 6.3 and 
that of the secant E(~ ) at o =  az obtained in 
Section 6.4. The value of e~ predicted is 1.08% 
(Fig. 6), while the experimental value is 1.02%. 
Hence, the theoretical prediction is also in good 
agreement with the exp~eriment. 

7. Conclusions 
(a) Theoretical analyses have been performed 
based upon the experimental observations that the 
short-fibre carbon/polyamide 66 systems deform 
in a highly elastic manner, and the non-linearity 
in the stress-strain curve is mainly due to the 
initiation and extension of fibre-end cracks. A 
typical stress-strain curve of this composite con- 
sists of three stages. 
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Figure 6 (a) Predicted stress-strain 
curve of misoriented 20% carbon 
short-fibre reinforced thermoplastic. 
(b) Tangent modulus, E L, plotted 
against strain, e. (c) The assumed 
crack density, re, as a function of 
applied stress. 

(b) The first linear stage can be modelled by 
the elastic deformation of the composite system 
with misoriented short fibres. The second stage 
occurs due to the initiation of fibre-end cracks and 
their subsequent arrest by adjacent short fibres. 

(c) The third stage deformation is modelled by 
the further extension of the arrested cracks in 
the matrix material. 

(d) The analysis has taken into account the 
volume-fraction aspect ratio and orientation of the 
short fibres as well as the elastic properties and 
surface energies of fibre and matrix. 

(e) Although the modelling of fibre orientation 
effect is a difficult task, it has been given con- 
sideration to the extent that the mathematical 
problems remain tractable. 

(f) Close agreements between the theoretical 

predictions and experimental data have been 
obtained regarding the overall shape of the stress- 
strain curve, the transition stresses between two 
consecutive stages, and the failure strain of the 
composite. 
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